skip to main content


Search for: All records

Creators/Authors contains: "Li, Mingda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 9, 2024
  2. Abstract

    The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

     
    more » « less
  3. Abstract

    Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

     
    more » « less
  4. null (Ed.)
  5. In this work, a single-device embodiment of XNOR logic, TransiXNOR, is designed and simulated. With double gates controlling the current tunneling plane either at the source or at the drain, the TransiXNOR is ON if and only if the dual gates are biased at both high or low voltage, thus the XNOR logic. 
    more » « less
  6. Abstract

    One central challenge in understanding phonon thermal transport is a lack of experimental tools to investigate frequency‐resolved phonon transport. Although recent advances in computation lead to frequency‐resolved information, it is hindered by unknown defects in bulk regions and at interfaces. Here, a framework that can uncover microscopic phonon transport information in heterostructures is presented, integrating state‐of‐the‐art ultrafast electron diffraction (UED) with advanced scientific machine learning (SciML). Taking advantage of the dual temporal and reciprocal‐space resolution in UED, and the ability of SciML to solve inverse problems involving coupled Boltzmann transport equations, the frequency‐dependent interfacial transmittance and frequency‐dependent relaxation times of the heterostructure from the diffraction patterns are reliably recovered. The framework is applied to experimental Au/Si UED data, and a transport pattern beyond the diffuse mismatch model is revealed, which further enables a direct reconstruction of real‐space, real‐time, frequency‐resolved phonon dynamics across the interface. The work provides a new pathway to probe interfacial phonon transport mechanisms with unprecedented details.

     
    more » « less